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REVIEW OF CIRCUIT SOLUTIONS LEADING 
TO DETERMINISTIC CHAOS IN OSCILLATORS 
BASED ON THE VAN DER POL EQUATION

The article is devoted to deterministic chaos generators based on the Van der Pol equation (VDP) 
and its modified versions. The papers that investigate the nonlinear behavior of the proposed modifications 
of the VDP equation, in particular, those that lead to chaotic behavior, are considered. Most purely mathematical 
works are not considered, preferring those that include modeling of the proposed systems of equations using 
simulators (PSpice, MultiSIM, OrCAD) and building a real prototype on an analog computer. The selected 
works are divided into three types of equations and generators based on them. The basic equation of VDP 
with an external signal source (forced) is studied at different signal parameters (shape, amplitude) and circuit 
modifications (adding passive elements, active filters, changing the number of external signal sources, nonlinear 
element). It is determined that robots based on the Van der Pol-Duffing equation are characterized by richer 
nonlinear behavior, even without an external signal source. The ability to control more system parameters 
leads to the observation of discontinuous oscillations, hyperchaos, and multistability. Both autonomous 
and non-autonomous versions of the schemes are presented. As the latter type, we study the Bonhoeffer-Van 
der Pol equation, which comes from the field of neuroscience, chemistry, and electrophysiology of the heart 
and can be converted into an electrical circuit. These implementations demonstrate interesting nonlinear 
behavior and deterministic chaos, but in a narrower range of system parameters. It is found that the system 
is characterized by fast-slow dynamics and has a complex mixed mode of oscillations. The result of the work 
is a non-exhaustive review of existing deterministic chaos generators based on the VDP equation, the existing 
gaps in the study of certain types of generators, approaches and methods for their creation, and tools used 
in their study are clarified. The structuring of existing approaches opens up the possibility of using the features 
of the above schemes to create completely new mathematical models or improve existing ones for covert 
information transmission systems.

Key words: deterministic chaos, chaos generator, forced oscillator, strange attractor, multiscroll attractor, 
bursting patterns, jerk oscillator, hyperchaos, nonautonomous chaos, computer simulation, PSpice simulations, 
FPGA, ACRO, VDP, Van der Pol, TOVDP, MVDP, VDPD, MVDPD, BVP, NDR.

Formulation of the problem. Some of the best 
known early examples of deterministic chaos from 
various fields are the Lorenz attractor (1963), Robert 
May’s logic map (1976), Otto Rössler’s system of 
differential equations (1976), and Chua’s generator 
(1983). Such systems are well studied and are widely 
used both to consider nonlinear phenomena from 
a mathematical point of view and for applications 
such as in the field of secure communication [1] 
and to create various schemes for a chaotic signal 
generator [2] that can be used as a carrier. However, 
an earlier manifestation of deterministic chaos is 
known, discovered, but not realized at the time, in 
the work of Van der Pol (VDP) and Jan der Mark 
[3], and re-explored using the scheme only 60 years 
later [4]. Most of the available works investigating 

in detail the nonlinear processes in the VDP equation 
are purely mathematical, although a review of the 
available material shows that there are various circuit 
variants of the VDP relaxation oscillator that lead to 
rich nonlinear behavior, including chaos. In spite of 
this, it was not possible to find any review papers 
that provided in a convenient form, at least in an 
introductory format, a list of possible circuit solutions 
leading to chaotic behavior in VDP relaxation 
oscillators.

Analysis of recent research and publications. 
Most of the available publications focus on purely 
mathematical consideration of nonlinear behavior in 
different variants of the VDP oscillator. For example, 
the VDP equations are analyzed using the multiple 
scaling method (MSM) [5], a fractional model 
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solution method [6], a mixed mode oscillator [7, 8], 
or an artificial intelligence based system for selecting 
optimal parameters for a forced VDP oscillator [9], 
as well as schemes using idealized elements [10]. 
There are fewer extensive works that examine the 
behavior of different circuits in simulation or on a 
real prototype, in [11] some chaos generators and 
synchronization methods are considered and practical 
applications are given. In [12], the use of analog 
computers (AC) is proposed for the visual study of 
chaotic systems. The connection between strange 
attractors and fractals, methods of fixing chaos are 
given in [13], and the only extensive and systematized 
collection of various schemes is the book [14], which, 
however, does not describe all possible variants of 
a chaos generator based on the VDP oscillator. The 
historical development of nonlinear oscillators, 
including relaxation oscillators, is devoted to [15].

Task statement. A brief and non-exhaustive 
survey of existing variants of circuit implementation 
of deterministic chaos generators based on the VDP 
relaxation generator equation and tested for the 
presence of chaotic behavior by means of simulation 
in MATLAB, SPICE software environments or 
prototyping. The classification was performed 
according to the modification of the VDP equation.

Outline of the main material of the study.
In 1926, Balthasar van der Pol in [16] emphasizes 
a separate group of oscillations, which he calls 
“relaxation oscillations” (although they have been 
observed before in other works or in parallel to his 
[17]), and, most importantly, gives a dimensionless 
equation describing it (which allows us to use it not 
only in electrical engineering) and provides a circuit 
based on a triode. A number of robots appear in which 
the phenomenon of synchronization in a circuit with 
an external signal source is discussed [18, 19], and 
the paper [3] describes forced oscillations in a circuit 
with a neon lamp. Such a scheme was already known 
and led to relaxation oscillations, but in the scheme 
with an external source noise was observed before the 
transition to a new, lower frequency. Later Cartwright 
and Littlewood mathematically investigated the VDP 
equation and observed “strange behavior”, which 
was a manifestation of chaotic dynamics [20, 21]. In 
1961, using an analog computer, chaotic behavior was 
also observed in the VDP equation. It was observed 
by Ueda at some parameters of angular frequency 
[21]. Perhaps the first practical implementation of 
a scheme similar to the VDP oscillator, for which 
a phase porter of a chaotic attractor was built, was 
proposed by Pikovsky and Rabinovich [21]. After the 
“Chua’s scheme” was created and the phenomenon 

of deterministic chaos was proved and shown 
[22, 23], an active development and search for 
schemes leading to chaos began. Thus, going back 
to [3], Kenedy and Chua [4] show the way to chaos 
through adding a period in a forced VDP oscillator, 
proving that the irregular noise at the transition to a 
new frequency was chaotic behavior. Thus there was 
a circuit proof that it is possible to design different 
versions of deterministic chaos generators using the 
VDP equation.

Briefly consider some works referred to different 
types depending on the equation, it should be taken 
into account that the authors of some of them 
combine different basic variants and one work can 
be referred to several types at once, also it should be 
specified that in the work under the word “chaos” and 
its derivatives there is exactly the phenomenon of 
deterministic chaos, not stochastic process, as well as 
under “analog computer” is meant the realization of 
equations with the help of digital amplifiers, analog 
multipliers, inverters.

Van der Pol’s forced oscillators (VDP). With 
the development of semiconductors, one of the main 
ways to observe chaotic behavior using circuitry is to 
implement the equation using AC built on operational 
amplifiers (OA) and analog multipliers [12–14]. One 
such variant of forced VDP is given in [24]. This 
scheme allows controlling 4 parameters and produces 
many rich bifurcations leading to chaos. If the source 
of the sinusoidal signal is replaced by an oscillating 
circuit, you can get an autonomous version of the 
forced oscillator VDP (ACRO). However, it will not 
depend on the period of the tuned loop. A variant of 
such a circuit built on an op-amp is studied in [25].

In the VDP oscillator one can observe bursting 
oscillations [26] and, based on the fast-slow dynamics, 
observe chaotic behavior at some parameter values. 
The scheme implemented by AC for such a variant 
was presented in [27]. The forcing signal consists of 
two different parameterized slowly varying functions 
sin (x). One of them is fixed, in the other one the 
frequency changes at constant amplitude, and chaotic 
oscillations are observed at a frequency of 0.6–0.8 Hz.

The periodic excitation can also be replaced by 
a triangular or meander signal [28]. It is found that, 
at a large dissipation term (ε = 5), chaotic behavior 
occurs at lower frequencies compared to sin (x). 
The paper presents a circuit implemented on AC, 
numerical simulation, and experimental verification 
are presented. Quasi-periodic and chaotic attractors 
have been observed.

The realization of the equation is possible not 
only on AC, but also using a microcontroller. Thus, 



151

Радіотехніка та телекомунікації

proposing a system of modified VDP oscillator, 
in which the potential of forced oscillation is 
proportional to the nonlinear term sinn(x), and thus 
changing the power of the sinusoidal function, in [29] 
it was found that at certain values of the nonlinear 
dissipation term ε, it is possible to obtain, chaotic 
behavior even at its small values. The mathematical 
model was validated on the layout (Arduino Uno and 
oscilloscope). Developing their past work in [30], 
using meander and triangular signal and varying its 
power, the authors confirm chaotic, quasi-periodic and 
periodic behavior, also, besides mathematical model 
and validation on the layout, electronic simulation 
in OrCAD-Pspice is carried out. It is also possible 
to replace the source of sinusoidal signal by a pulse 
source [31, 32], the obtained strange attractors have 
a large number of turns and are called “Multiscrolls” 
[33], but the simulation of the electronic circuit in 
these works is not given, which opens the possibility 
of further investigation of this type of influence.

The problem of selecting a high-frequency 
nonlinear element arises in the design of microwave 
oscillators, one of the variants having the area of 
negative differential impedance is given in [34]. The 
authors consider three mathematical models used to 
describe oscillations in chaotic and periodic systems. 
Using a simplified VDP model they demonstrate the 
behavior of the proposed circuit on a resonant tunnel 
diode when multiplying and dividing the frequency 
of the input signal. The realization of the nonlinear 
element is possible based on a negative differential 
resistance (NDR) transistor structure. A variant of 
such a voltage controlled oscillator (VCO) based 
on the modified VDP equation is studied in [35]. 
Two cases of system dynamics are considered, 
in the presence and absence of white noise. The 
considered approach is useful in terms of real systems 
implementation and for oscillator synchronization. 
Developing this approach in [36], the authors propose 
new schemes of voltage-controlled VDP microwave 
oscillators on field-effect and bipolar transistors with 
NDR, and the possibility of tuning their frequency 
in different ways. More variants of VDP oscillators 
operating in relaxation and quasi-periodic modes are 
mathematically and experimentally investigated in 
[37].

An oscillator with a fifth order nonlinear term 
(restoring force potential j6) is studied in [38], a 
scheme of the proposed equation on AC is constructed 
in Multisim simulator, in which by changing the value 
of two resistors R8–9 the numerical simulation of this 
equation is confirmed, as a result, the authors give 
phase portraits for double and triple spiral attractors 

obtained from two simulations and from the layout of 
the scheme.

Since Leon Chua proposed a new element, the 
memristor [39], various variants of its realization 
and use have gradually started to appear, due to its 
hysteresis V-I characteristic it is interesting to use it 
as a nonlinear element in schemes of deterministic 
chaos generation. One of such schemes of forced 
VDP is investigated in [40]. The circuits are 
implemented on the OA and analog multipliers, 
experimental verification at different frequencies of 
the periodic signal source has been carried out, the 
results converge with numerical simulations.

Another scheme using a memristor, but with two 
periodic signal sources (angular frequencies are in the 
ratio of 3 to 1), is investigated in [41]. The proposed 
memristor model is tested in Multisim, and the chaotic 
dynamics of the circuit is analyzed only numerically, 
based on resonance relations. The main focus of the 
paper is on the comparison of numerical integration 
methods, where symplectic methods are found to be 
more accurate and efficient.

By including an active low pass filter or all pass filter 
(APF) between the nonlinear element the authors of 
[42] present a variant of modified VPD (MVDP). The 
equation that describes it involves three differential 
equations so the authors define it as third order VDP 
oscillators (TOVDP), the scheme being autonomous 
due to this modification transitions to chaos without 
an external signal source. The paper studies 
antimonotonicity, coexisting attractors, hysteresis. 
Besides analytical and numerical verification, the 
authors make a prototype of the proposed scheme 
and confirm the existence of a strange attractor by 
changing two new parameters (responsible for the 
delay) introduced by the filter and a resistor in the 
feedback loop.

An interesting case, which shows the influence of 
model simplification on the dynamics of the system, 
is [43]. Considering the model proposed by Pikovsky 
and Rabinovich, the authors complicate it by bringing 
it to a more realistic form, adding an amplifying 
element on a transistor and a tunnel diode. Modeling 
is carried out in Pspice and Matlab-Simscape. Three 
variants of the model are considered, each with its 
own behavior (steady state, period doubling, chaos). 
However, for the last model, which is the closest to 
the real one, no attractor is given, only non-periodic 
oscillations. It is assumed that with a longer checking 
period, the observed state would have shifted to 
chaotic. The paper also considers synchronization 
through non-entropy by introducing a rectangular 
voltage source, which suppresses the chaotic behavior.
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Oscillators Van der Pol–Duffing (VDPD). 
Another well-known nonlinear second-order 
differential equation leading to deterministic chaos 
in the presence of an external sinusoidal force 
is the Duffing oscillator, whose restoring force 
contains cubic nonlinearity. It is well studied from 
the mathematical point of view [44] and on its basis 
there are various circuit implementations [45, 46] 
investigating its nonlinear dynamics. Adding cubic 
nonlinearity to the equation of the forced VDP 
oscillator transforms it into the Van der Pol-Duffing 
equation, which combines auto-oscillatory behavior 
with strong nonlinearity, the dependence of the 
oscillation period on the amplitude (non-isochronous 
oscillation), more possibilities for control, rich 
chaotic behavior.

One variant of the scheme, which is a modified 
Shinriki scheme [47], was proposed in a series of 
papers [48, 49]. In the papers, the Takens-Bogdanov, 
Silnikov, and Hoph bifurcation, the coexistence of 
deterministic chaos and periodic modes, was found. 
The nonlinear element consists of an array of diodes 
and an operational amplifier to precisely control the 
unfolding parameter.

Another diode-based scheme is given in [50]. In 
addition to the idealized diode, the scheme including 
a cos(x) signal source and a negative resistance is a 
kind of forced oscillator VDPD. At certain parameters 
the limit cycle, torus and transition to a chaotic 
attractor are observed.

Let us consider several variants that slightly modify 
the basic scheme for these robots, the first one [51]. 
The changes consist in adding a resistor in parallel 
to one of the inductors, which allows us to consider 
dynamic processes in a small range of parameters. The 
circuit has one cubic nonlinear element. Numerical 
verification of the circuit using MATLAB and Fortran 
for chaotic behavior is given. The second [52] resistor 
is added in series with the inductor, in [53] combine 
series and parallel resistor and add a source of 
oscillation which makes the system non-autonomous, 
the dynamics is investigated at different parameters 
of the periodic signal. An interesting feature is the 
use of a two-parameter bifurcation spatial diagram 
obtained from Lyapunov spectra. It is concluded that 
a larger range of parameters is achieved leading to 
chaotic behavior in the absence of a parallel resistor 
in a non-autonomous circuit.

All the above robots study the VDPD circuit only 
from a mathematical point of view, without creating 
a prototype. In [54], a circuit without inductance 
parallel resistor is given, the nonlinear element is the 
same as in [48], modulation in PSpice is performed, 

and an experimental setup is created. The authors 
investigate the possibility of synchronizing two 
autonomous modified VDPD (MVDPD) by magnetic 
coupling and achieve zero synchronization errors.

A forced VPD oscillator with potential j8 
(a nonlinear term of the seventh order appears in the 
equation of the restoring force potential) is proposed 
in [55]. Using the method of multiple scales, stability 
conditions for fixed points and resonant oscillations 
are given. The behavior of the system is examined 
using bifurcation diagrams, Lyapunov exponents, 
phase portraits, time series and Poincaré maps. To 
validate the numerical and analytical results, the 
system is verified in MultiSIM and in an experimental 
setup. Changing the parameter of resistor R7 allows us 
to observe transitions between periodic and chaotic 
behavior.

A generator demonstrating discontinuous 
oscillations based on OA and analog multipliers 
to simulate a nonlinear element, when modeled in 
OrCAD-PSpice and numerically investigated, is 
given in [56]. The authors find symmetric bifurcations 
and coexisting attractors. A model for integer and 
fractional order form (positive Lyapunov exponents 
appear in a smaller range of parameters) of the 
studied oscillator is given, the peculiarity of which 
is the choice of the range of control coefficients, the 
work focuses on the case for double hump potential 
(for a > 0 and b < 0). A mathematical study of a jerk 
VPD with external and parametric forcing is given 
in [57], but the authors do not verify their model by 
means of a circuit.

By replacing the periodic source in a non-
autonomous VDPD by positive feedback, one can 
reduce the generator size [58] and obtain chaotic 
behavior (the case of double hump potential) in a 
certain range of parameters. The verification of the 
proposed system of equations is performed in Orcard-
PSpice. The circuit is assembled on an op-amp and 
analog multipliers. The cubic nonlinearity is changed 
by changing the parameter of resistor R14.

A nonlinear system with symmetry breaking 
by adding an appropriate parameter to the VDPD 
equation (affects the bias current of the OA) and 
exhibiting multistability, five coexisting attractors 
(including hidden attractors) is proposed in [59]. The 
numerical results are verified using circuit modulation 
(analog computer) in PSpice.

Using the fourth order differential equation 
in [60], a system with hyperchaos property is 
given, there are two positive Lyapunov exponents, 
belonging to MVPD. To verify the numerical results, 
it is implemented on field programmable gate array 
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(FPGA), software-hardware cosimulation is used and 
direct Euler method is used as the mathematical model, 
Kintex-7 processor is selected for the hardware.

Oscillators Bonhoeffer–van der Pol (BVP). 
Another modification of the VPD equation is the 
Bonhoeffer-van der Pol equation, which is a simplified 
FitzHugh-Nagumo model [61] and is used to describe 
excitable systems, particularly in neuroscience and 
cardiac electrophysiology. It is less complex (in 
terms of the number of control parameters) than 
VDPD, although it has cubic nonlinearity. Its feature 
is fast-slow dynamics and mixed mode oscillation 
(MMO) [62, 63, 64]. At certain values of the terms 
of the equation also exhibits chaotic behavior (in 
forced systems). There are few works that describe 
the schemes and experimentally verify them, mainly 
mathematical models are given.

An analog circuit of a forced oscillator BVP with 
a nonlinear element built on an op-amp and diodes 
is experimentally investigated in [65]. The authors 
observe a complex mixed mode of oscillations 
with incrementing bifurcations (MMOIB) and 
discontinuous chaotic MMO (which is often observed 
in chemical experiments) in a narrow range of 
parameters. The dynamics of the coupled system 
is mathematically investigated in [66], where the 
case of series and ring coupling of two and three 
forced BVPs, the possibility of synchronization of 
the systems and the transition from chaos to limit 
cycle are tested. Experimentally the scheme with 
resistively coupled BVP oscillators is proposed in 
[67] under a weak periodic perturbation. By changing 
the coupling strength in a small range of parameters a 
strange attractor is observed.

Conclusions. Some number of variants of 
deterministic chaos realization in schemes based 
on the VPD equation has been considered. It is 

supposed that by combining the considered solutions 
it is possible to offer new variants of schemes. The 
examination is not exhaustive, but only shows the 
variety of approaches that can be used to observe 
complex nonlinear dynamics. By modifying the basic 
relaxation oscillation equation proposed by VPD, 
adding a nonlinear element and an external signal 
source, one can obtain a forced oscillator; a restoring 
force containing a cubic nonlinearity – VDPD; a slow 
recovery variable and a cubic nonlinearity – BVP. In 
the above works, a large number of ways to influence 
the dynamics of the system have been proposed: the 
shape or power of the signal source; the number of 
signal sources; the restoring force (potential j); the 
type of nonlinear element; changing the ratings of 
circuit elements (or the values of the terms of the 
equation in the case of an analog computer); the 
number of oscillators; the coupling coefficient; the 
detuning coefficient; active filters; additional passive 
elements. Thus one can observe different dynamics: 
periodic; quasi-periodic; chaotic behavior; different 
variants of bifurcations; MMOIB; intermittency; torus 
collapse; multiscrolls; discontinuous oscillations; 
hyperchaos; multistability; crises; symmetric and 
asymmetric attractors.

The study of the dynamics of systems in the works 
is carried out numerically, analytically, by modulating 
the circuit in a simulator, experimentally on a 
prototype. In most cases, the circuits are built using 
an analog computer (op-amp, analog multipliers, 
inverters) or on a microcontroller, FPGA. Less often 
on passive elements and those with a nonlinear V-I 
characteristic. The authors of most works do not create 
a real prototype, limiting themselves to simulation, 
which, as shown in some articles, can distort the real 
results and give only approximate values at which 
there is a change in the dynamics of the system.
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Семенов А. О., Хльоба А. А. ОГЛЯД СХЕМОТЕХНІЧНИХ РІШЕНЬ, ЩО ПРИЗВОДЯТЬ 
ДО ДЕТЕРМІНОВАНОГО ХАОСУ В ГЕНЕРАТОРАХ 
НА ОСНОВІ РІВНЯННЯ ВАН ДЕР ПОЛЯ

Стаття присвячена генераторам детермінованого хаосу побудованих на основі рівняння Ван дер 
Поля (VDP) і його модифікованих версіях. Розглянуто роботи, в яких досліджується нелінійна поведінка 
запропонованих модифікацій рівняння VDP, зокрема така що призводить до хаотичної поведінки. 
Більшість винятково математичних робіт не розглядається, відаючи перевагу тим, що включають 
моделювання запропонованих систем рівнянь за допомогою симуляторів (PSpice, MultiSIM, OrCAD) 
і побудову реального прототипу на аналоговому комп’ютері. Виокремлені праці розділені за трьома 
типами рівнянь і генераторами на їх основі. Базове рівняння VDP із зовнішнім джерелом сигналу 
(вимушене) досліджується при різних параметрах сигналу (форма, амплітуда) та модифікаціях 
схеми (додавання пасивних елементів, активних фільтрів, зміна кількісті джерел зовнішнього сигналу, 
нелінійного елемента). Визначено, що роботи на основі рівняння Van der Pol-Duffing відрізняються 
багатшою нелінійною поведінкою, навіть без зовнішнього джерела сигналу. Можливість управління 
більшою кількістю параметрів системи призводить до спостереження розривних коливаннь, 
гіперхаосу, мультистабільністі. Наведено роботи як автономних, так і неавтономних варіантів схем. 
Як останній тип досліджується рівняння Bonhoeffer-Van der Pol, що походить із галузі нейронаук, 
хімії та електрофізіології серця, та може бути перетворене на електричну схему. Наведені реалізації 
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демонструють цікаву нелінійну поведінку і детермінований хаос, але у вужчому діапазоні параметрів 
системи. З’ясовано, що система відрізняється динамікою «швидко-повільно», має складний 
змішаний режим коливань. Результатом виконаної роботи є невичерпний огляд існуючих генераторів 
детермінованого хаосу на основі рівняння VDP, з’ясовані наявні прогалини в досліджені певних типів 
генераторів, підходи і методи їх створення, інструменти які використовуються при їх досліджені. 
Структурування існуючих підходів відкриває можливість використання особливостей наведених схем 
для створення абсолютно нових математичних моделей або поліпшення наявних для систем прихованої 
передачі інформації.

Ключові слова: детермінований хаос, генератор хаосу, вимушений гененратор, дивний аттрактор, 
розривні коливання, багатовитковий атрактор, гіперхаос, неавтономний хаос, комп’ютерне 
моделювання, моделювання PSpice, ПЛІС, ACRO, Van der Pol, VDP, TOVDP, MVDP, VDPD, MVDPD, 
BVP, NDR.


